https://data.archives-ouvertes.fr/document/hal-00000001v2

https://data.archives-ouvertes.fr/document/hal-00000001v2

http://purl.org/dc/terms/isPartOf https://hal.science/OMNIPHILO
http://purl.org/dc/terms/references https://doi.org/10.1103/physrevlett.74.4091
http://purl.org/dc/terms/isPartOf https://hal.science/CIREL-FORMATION
http://purl.org/dc/terms/isVersionOf https://data.archives-ouvertes.fr/document/hal-00000001
http://purl.org/dc/elements/1.1/language en
http://purl.org/dc/terms/references http://arxiv.org/abs/quant-ph/9810028
http://www.w3.org/2002/07/owl#sameAs https://dx.doi.org/10.1119/1.1356698
http://purl.org/dc/elements/1.1/subject Bell theorem
http://purl.org/dc/terms/modified 2024-04-19T16:18:53
http://purl.org/dc/terms/isPartOf https://hal.science/ALLINSP
http://purl.org/dc/terms/title Do we really understand quantum mechanics?
http://www.openarchives.org/ore/terms/aggregates https://hal.science/hal-00000001v2/file/mq-anglais.pdf
http://purl.org/dc/terms/references http://arxiv.org/abs/quant-ph/9606004
http://purl.org/dc/elements/1.1/subject foundations of quantum mechanics
http://purl.org/dc/terms/isPartOf https://hal.science/LKB
http://www.w3.org/2002/07/owl#sameAs https://arxiv.org/abs/quant-ph/0209123
http://purl.org/dc/terms/references https://doi.org/10.1016/s0375-9601(99)00646-5
http://purl.org/ontology/bibo/volume 69
http://purl.org/dc/terms/bibliographicCitation Franck Laloë. Do we really understand quantum mechanics?. American Journal of Physics, 2001, 69, pp.655 - 701. ⟨10.1119/1.1356698⟩. ⟨hal-00000001v2⟩
http://purl.org/dc/terms/creator _:vb863955
http://data.archives-ouvertes.fr/schema/topic https://data.archives-ouvertes.fr/subject/shs.hisphilso
http://purl.org/dc/terms/isPartOf https://hal.science/PSL
http://purl.org/ontology/bibo/pageStart 655
http://purl.org/dc/terms/references https://doi.org/10.1002/qua.560180819
http://purl.org/dc/terms/contributor _:vb863954
http://purl.org/dc/terms/isPartOf https://hal.science/UPMC_POLE_2
http://purl.org/dc/elements/1.1/subject quantum measurement
http://purl.org/dc/terms/isPartOf https://hal.science/ENS-PARIS
http://purl.org/dc/terms/isPartOf https://hal.science/ENS-PSL
http://purl.org/dc/terms/available 2004-11-14
http://purl.org/dc/terms/isPartOf https://hal.science/UPMC
http://purl.org/dc/terms/references https://doi.org/10.1103/physreva.54.2759
http://purl.org/dc/terms/references https://hal.archives-ouvertes.fr/hal-00296897
http://purl.org/ontology/bibo/pageEnd 701
http://purl.org/dc/terms/identifier hal-00000001
http://purl.org/dc/terms/isPartOf https://hal.science/SU-SCIENCES
http://purl.org/dc/terms/isPartOf https://hal.science/SU-TI
http://purl.org/dc/terms/isPartOf https://hal.science/SORBONNE-UNIVERSITE
http://purl.org/dc/terms/isPartOf https://hal.science/SHS
http://purl.org/dc/terms/issued 2001
http://purl.org/dc/terms/abstract This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except the very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postulate: the reduction of the state vector, which comes in addition to the Schrödinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) maybe a potential source for conflicts; various attitudes that are possible to avoid this problem are discussed in this text. After a brief historical introduction, recalling how the very special status of the state vector has emerged in quantum mechanics, various conceptual difficulties are introduced and discussed. The Einstein Podolsky Rosen (EPR) theorem is presented with the help of a botanical parable, in a way that emphasizes how deeply the EPR reasoning is rooted into what is often called "scientific method''. In another section the GHZ argument, the Hardy impossibilities, as well as the BKS theorem are introduced in simple terms.
http://purl.org/dc/terms/isPartOf https://hal.science/ALLIANCE-SU
http://purl.org/dc/terms/language http://lexvo.org/id/iso639-1/en
http://purl.org/dc/terms/isPartOf https://hal.science
http://purl.org/dc/terms/references https://doi.org/10.1103/physreva.39.2277
http://data.archives-ouvertes.fr/schema/arxiv quant-ph/0209123
http://purl.org/dc/terms/identifier https://hal.science/hal-00000001
http://purl.org/ontology/bibo/doi 10.1119/1.1356698
http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://purl.org/spar/fabio/Article
http://purl.org/dc/terms/references https://doi.org/10.1119/1.16243
http://purl.org/dc/terms/isPartOf https://hal.science/CNRS
http://purl.org/dc/terms/isPartOf https://data.archives-ouvertes.fr/revue/2872
http://purl.org/dc/elements/1.1/subject GHZ theorem
http://purl.org/dc/terms/created 2004-11-14T12:50:42
http://purl.org/dc/terms/type https://data.archives-ouvertes.fr/doctype/Article
http://purl.org/dc/terms/isPartOf https://hal.science/HIPHISCITECH
http://data.archives-ouvertes.fr/schema/topic https://data.archives-ouvertes.fr/subject/phys.qphy
http://purl.org/dc/elements/1.1/subject alternative theories

https://data.archives-ouvertes.fr/document/hal-00000001

http://purl.org/dc/terms/hasVersion https://data.archives-ouvertes.fr/document/hal-00000001v2

_:vb863955

http://data.archives-ouvertes.fr/schema/person https://data.archives-ouvertes.fr/author/828332
http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://data.archives-ouvertes.fr/schema/Author
http://data.archives-ouvertes.fr/schema/structure https://data.archives-ouvertes.fr/structure/1

https://data.archives-ouvertes.fr/document/hal-00000001v1

http://purl.org/dc/terms/isReplacedBy https://data.archives-ouvertes.fr/document/hal-00000001v2

Télécharger au format